25 August 2008

High Res Images for Video Games

The images of rocks, clouds, marble and other textures that serve as background images and details for 3D video games are often hand painted and thus costly to generate. A breakthrough from a UC San Diego computer science undergraduate now offers video game developers the possibility of high quality yet lightweight images for 3D video games that are generated "on the fly" and are free of stretch marks, flickering and other artifacts. The 2008 SIGGRAPH paper marks an important improvement over Perlin noise, an established technique in which small computer programs create many layers of noise that are piled on top of each other. The layers are then manipulated -- like layers of paint on a canvas -- in order to develop detailed and realistic textures such as rock, soil, cloud, water and marble that serve as background images and details for 3D video games.

The new approach also eliminates the need to store the textures as huge images that take up valuable memory. Instead the textures are generated by computer programs on the fly every time an image is rendered. Both the stretch marks and the flickering in 3D video game backgrounds often stem from the same technical issue: choosing what color to make individual pixels. They mapped elliptical areas of background images back to circular pixels and found that their technique yielded higher quality background images with less stretching and other distortions. The reason elliptical shapes are a better fit for circular pixels in backgrounds for 3D video games goes back to basic geometry: when a cone that extends from a circular pixel intersects with the background of a 3D video game scene, the region of the cone that hits the background is an ellipse rather than a circle.

More information:

http://www.physorg.com/news137771248.html