19 November 2016

AI Algorithm Keeps Learning

Researchers have designed an algorithm that learns directly from human instructions, rather than an existing set of examples, and outperformed conventional methods of training neural networks by 160 per cent. But more surprisingly, their algorithm also outperformed its own training by nine per cent -- it learned to recognize hair in pictures with greater reliability than that enabled by the training, marking a significant leap forward for artificial intelligence. This algorithm learns directly from human trainers.


With this model, called heuristic training, humans provide direct instructions that are used to pre-classify training samples rather than a set of fixed examples. The heuristic training approach holds considerable promise for addressing one of the biggest challenges for neural networks: making correct classifications of previously unknown or unlabeled data. This is crucial for applying machine learning to new situations, such as correctly identifying cancerous tissues for medical diagnostics, or classifying all the objects surrounding and approaching a self-driving car.

More information: