15 November 2015

How Does The Brain Reconstruct the Visual World

Given that we see the world through two small, flat retinae at the backs of our eyes, it seems remarkable that what each of us perceives is a seamless, three-dimensional visual world. The retinae respond to various wavelengths of light from the world around us. But that’s just the first part of the process. Our brains have to do a lot of work with all that raw data that comes in—stitching it all together, choosing what to concentrate on and what to ignore. It’s the brain that constructs our visual world. Neuroscience researchers and cognitive scientists have recently made much progress investigating how this process works. My own research focuses on how humans construct the visual world by selecting what visual information to pay attention to and using visual memory to retain it over short periods of time. There’s a lot more than simple sensory input that goes into building our perception of the visual world we live within. The retina is a sheet of cells at the back of each of our eyes. Some of these cells, called photoreceptors, are sensitive to light. There are two main types: rods are sensitive to light-dark differences and cones are sensitive to color. These photoreceptors are most densely packed together in a small area at the center of the retina called the fovea. It corresponds to the center of our vision, where resolution is at its highest. Detail progressively decreases for distances further from the center of our visual field—that is, in the periphery (hence “peripheral vision”).


As we look around our environment, we move our eyes. This enables us to orient the fovea toward what we’re most interested in within the vicinity. These voluntary eye movements are called saccades and are made about three times a second. Given that the eyes are in constant motion, how does the picture of the world we have in our mind remain so apparently stable? Investigating this apparent discrepancy, neuroscientists have discovered that inputs from the eyes are suppressed during saccades, so we don’t register the fast motion and image blur that would otherwise occur. Furthermore, our brain corrects for movements of the eyes using information from the eye muscles that control their movement. Because the brain omits the information that comes in while the eyes are moving, our visual world is perceived mostly during fixations, the short periods of time (approximately 200-300 milliseconds long) when the eyes are stationary. While reading for instance, our eyes are in motion only 10%-20% of the time. During each fixation, we must select the visual information most relevant to performing the task at hand. We have an ability to attend to or focus on one or several sources of information while ignoring all the rest, or at least reducing their significance. Researchers call this visual attention; they think it’s critical for helping us bind together or integrate elementary features (for instance, color, orientation) to form the perception of complete objects in the environment.

More information: