30 January 2017

Big Brain, Big Data

As big brain-mapping initiatives go, Taiwan's might seem small. Scientists there are studying the humble fruit fly, reverse-engineering its brain from images of single neurons. Their efforts have produced 3D maps of brain circuitry in stunning detail. Researchers need only a computer mouse and web browser to home in on individual cells and zoom back out to intertwined networks of nerve bundles. The wiring diagrams look like colorful threads on a tapestry, and they're clear enough to show which cell clusters control specific behaviors. By stimulating a specific neural circuit, researchers can cue a fly to flap its left wing or swing its head from side to side.


But even for such a small creature, it has taken the team a full decade to image 60,000 neurons, at a rate of 1 gigabyte per cell, and that's not even half of the nerve cells in the Drosophila brain. Using the same protocol to image the 86 billion neurons in the human brain would take an estimated 17 million years, Chiang reported at the meeting. Other technologies are more tractable. So it goes in the world of neurobiology, where big data is truly, epically big. Despite advances in computing infrastructure and data transmission, neuroscientists continue to grapple with their version of the 'big data' revolution that swept the genomics field decades ago.

More information: